Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electron weak localization and electron-electron interaction effects on magneto-conductivity in In-Ga-Zn oxide films

Identifieur interne : 000137 ( Main/Repository ); précédent : 000136; suivant : 000138

Electron weak localization and electron-electron interaction effects on magneto-conductivity in In-Ga-Zn oxide films

Auteurs : RBID : Pascal:14-0094879

Descripteurs français

English descriptors

Abstract

We investigated the magnetoconductivity Δσ(H,T) defined by a function of magnetic field H and temperature T for three-dimensional indium-gallium-zinc oxide films in the resistivity ρ range of 0.076 × 10-3 Ω m ≤ ρ(2.0 K) ≤ 0.55 × 10-3 Ω m. Here, Δσ(H,T) is the Δσ(H,T) ≡ 1 ρ(H,T) - 1 / ρ(0,T). With increasing ρ, the contribution ΔσEEI due to the electron-electron interaction (EEI) effect overcomes the contribution ΔσWL due to the weak localization (WL) effect. The sign of Δσ(H) = ΔσEEI + ΔWL changes from positive to negative with increasing magnetic field, particularly at low temperatures. To perform a systematic investigation of ΔσEEI, we obtained the contribution of AAEEI using the relation ΔσEEI(H,T) = Δσexp.(H,T) - Δσtheo.WL(H,T). where Δσtheo.WL (H,T) is estimated by fitting the WL theory to data at low magnetic fields. It was found that i) ΔσEEI(H,T)/√T as a function of H/T for each film collapses onto a single universal curve at a magnetic field of up to 5 T and in the temperature range between 2.0 and 50 K. ii) From the analyses of ΔσEEI(H,T)/√T in the high and low H/T regions with the EEI theory, the screening factors FΔσ,H and FΔσ,L were estimated, respectively. iii) The FΔσ,H values satisfy the theoretical prediction as 0 < F < 1. iv) With increasing ρ, the magnitudes of both FΔσ,H and FΔσ,L essentially decrease to approach 0 at ρc ≃ 1.3 × 10-3 Ω m, where the metal-insulator transition is suggested to occur.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0094879

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electron weak localization and electron-electron interaction effects on magneto-conductivity in In-Ga-Zn oxide films</title>
<author>
<name sortKey="Shinozaki, Bunju" uniqKey="Shinozaki B">Bunju Shinozaki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Kyushu University</s1>
<s2>Fukuoka 810-8560</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Fukuoka 810-8560</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hidaka, Kazuya" uniqKey="Hidaka K">Kazuya Hidaka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Kyushu University</s1>
<s2>Fukuoka 810-8560</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Fukuoka 810-8560</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ezaki, Syouhei" uniqKey="Ezaki S">Syouhei Ezaki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Kyushu University</s1>
<s2>Fukuoka 810-8560</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Fukuoka 810-8560</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Makise, Kazumasa" uniqKey="Makise K">Kazumasa Makise</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Kobe Advanced Research Center, The National Institute of Information and Communications Technology</s1>
<s2>Kobe 651-2492</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Kobe 651-2492</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Asano, Takayuki" uniqKey="Asano T">Takayuki Asano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Kyushu University</s1>
<s2>Fukuoka 810-8560</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Fukuoka 810-8560</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tomai, Shigekazu" uniqKey="Tomai S">Shigekazu Tomai</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd</s1>
<s2>Chiba 299-0293</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Chiba 299-0293</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yano, Koki" uniqKey="Yano K">Koki Yano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd</s1>
<s2>Chiba 299-0293</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Chiba 299-0293</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nakamura, Hiroaki" uniqKey="Nakamura H">Hiroaki Nakamura</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd</s1>
<s2>Chiba 299-0293</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Chiba 299-0293</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0094879</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0094879 INIST</idno>
<idno type="RBID">Pascal:14-0094879</idno>
<idno type="wicri:Area/Main/Corpus">000041</idno>
<idno type="wicri:Area/Main/Repository">000137</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electrical conductivity</term>
<term>Electron localization</term>
<term>Electron-electron interactions</term>
<term>Gallium</term>
<term>Gallium Indium Zinc Oxides Mixed</term>
<term>Low field</term>
<term>Metal-insulator transition</term>
<term>Temperature dependence</term>
<term>Thin films</term>
<term>Weak localisation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Localisation électronique</term>
<term>Localisation faible</term>
<term>Interaction électron électron</term>
<term>Conductivité électrique</term>
<term>Couche mince</term>
<term>Champ faible</term>
<term>Dépendance température</term>
<term>Transition métal isolant</term>
<term>Gallium</term>
<term>Gallium Indium Zinc Oxyde Mixte</term>
<term>7361</term>
<term>7130</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigated the magnetoconductivity Δσ(H,T) defined by a function of magnetic field H and temperature T for three-dimensional indium-gallium-zinc oxide films in the resistivity ρ range of 0.076 × 10
<sup>-3</sup>
Ω m ≤ ρ(2.0 K) ≤ 0.55 × 10
<sup>-3</sup>
Ω m. Here, Δσ(H,T) is the Δσ(H,T) ≡ 1 ρ(H,T) - 1 / ρ(0,T). With increasing ρ, the contribution Δσ
<sub>EEI</sub>
due to the electron-electron interaction (EEI) effect overcomes the contribution Δσ
<sub>WL</sub>
due to the weak localization (WL) effect. The sign of Δσ(H) = Δσ
<sub>EEI</sub>
<sub>+</sub>
Δ
<sub>WL</sub>
changes from positive to negative with increasing magnetic field, particularly at low temperatures. To perform a systematic investigation of Δσ
<sub>EEI</sub>
, we obtained the contribution of AA
<sub>EEI</sub>
using the relation Δσ
<sub>EEI</sub>
(H,T) = Δσ
<sup>exp.</sup>
(H,T) - Δσ
<sup>theo.</sup>
<sub>WL</sub>
(H,T). where Δσ
<sup>theo.</sup>
<sub>WL</sub>
(H,T) is estimated by fitting the WL theory to data at low magnetic fields. It was found that i) Δσ
<sub>EEI</sub>
(H,T)/√T as a function of H/T for each film collapses onto a single universal curve at a magnetic field of up to 5 T and in the temperature range between 2.0 and 50 K. ii) From the analyses of Δσ
<sub>EEI</sub>
(H,T)/√T in the high and low H/T regions with the EEI theory, the screening factors F
<sub>Δσ,H</sub>
and F
<sub>Δσ,L</sub>
were estimated, respectively. iii) The F
<sub>Δσ,H</sub>
values satisfy the theoretical prediction as 0 < F < 1. iv) With increasing ρ, the magnitudes of both F
<sub>Δσ,H</sub>
and F
<sub>Δσ,L</sub>
essentially decrease to approach 0 at ρ
<sub>c</sub>
≃ 1.3 × 10
<sup>-3</sup>
Ω m, where the metal-insulator transition is suggested to occur.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>551</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electron weak localization and electron-electron interaction effects on magneto-conductivity in In-Ga-Zn oxide films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHINOZAKI (Bunju)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HIDAKA (Kazuya)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EZAKI (Syouhei)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MAKISE (Kazumasa)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ASANO (Takayuki)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TOMAI (Shigekazu)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>YANO (Koki)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>NAKAMURA (Hiroaki)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Kyushu University</s1>
<s2>Fukuoka 810-8560</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Kobe Advanced Research Center, The National Institute of Information and Communications Technology</s1>
<s2>Kobe 651-2492</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd</s1>
<s2>Chiba 299-0293</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>195-199</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786250360</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0094879</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We investigated the magnetoconductivity Δσ(H,T) defined by a function of magnetic field H and temperature T for three-dimensional indium-gallium-zinc oxide films in the resistivity ρ range of 0.076 × 10
<sup>-3</sup>
Ω m ≤ ρ(2.0 K) ≤ 0.55 × 10
<sup>-3</sup>
Ω m. Here, Δσ(H,T) is the Δσ(H,T) ≡ 1 ρ(H,T) - 1 / ρ(0,T). With increasing ρ, the contribution Δσ
<sub>EEI</sub>
due to the electron-electron interaction (EEI) effect overcomes the contribution Δσ
<sub>WL</sub>
due to the weak localization (WL) effect. The sign of Δσ(H) = Δσ
<sub>EEI</sub>
<sub>+</sub>
Δ
<sub>WL</sub>
changes from positive to negative with increasing magnetic field, particularly at low temperatures. To perform a systematic investigation of Δσ
<sub>EEI</sub>
, we obtained the contribution of AA
<sub>EEI</sub>
using the relation Δσ
<sub>EEI</sub>
(H,T) = Δσ
<sup>exp.</sup>
(H,T) - Δσ
<sup>theo.</sup>
<sub>WL</sub>
(H,T). where Δσ
<sup>theo.</sup>
<sub>WL</sub>
(H,T) is estimated by fitting the WL theory to data at low magnetic fields. It was found that i) Δσ
<sub>EEI</sub>
(H,T)/√T as a function of H/T for each film collapses onto a single universal curve at a magnetic field of up to 5 T and in the temperature range between 2.0 and 50 K. ii) From the analyses of Δσ
<sub>EEI</sub>
(H,T)/√T in the high and low H/T regions with the EEI theory, the screening factors F
<sub>Δσ,H</sub>
and F
<sub>Δσ,L</sub>
were estimated, respectively. iii) The F
<sub>Δσ,H</sub>
values satisfy the theoretical prediction as 0 < F < 1. iv) With increasing ρ, the magnitudes of both F
<sub>Δσ,H</sub>
and F
<sub>Δσ,L</sub>
essentially decrease to approach 0 at ρ
<sub>c</sub>
≃ 1.3 × 10
<sup>-3</sup>
Ω m, where the metal-insulator transition is suggested to occur.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A30</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Localisation électronique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electron localization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Localización electrónica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Localisation faible</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Weak localisation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Interaction électron électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electron-electron interactions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Champ faible</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Low field</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Campo débil</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Transition métal isolant</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Metal-insulator transition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Gallium Indium Zinc Oxyde Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Gallium Indium Zinc Oxides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>7130</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>132</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000137 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000137 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0094879
   |texte=   Electron weak localization and electron-electron interaction effects on magneto-conductivity in In-Ga-Zn oxide films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024